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Abstract

Borrelia mayonii, a recently recognized species within the Borrelia burgdorferi sensu lato 

complex, has been detected in host-seeking Ixodes scapularis Say ticks and found to be associated 

with Lyme disease in the Upper Midwest. This spirochete has, to date, not been documented from 

the Northeast, but we previously demonstrated that I. scapularis ticks originating from Connecticut 

are capable of serving as a vector of B. mayonii. In this follow-up study, we compared the vector 

efficiency for B. mayonii (strain MN14-1420) of I. scapularis ticks originating from Minnesota in 

the Upper Midwest and Connecticut in the Northeast. CD-1 outbred white mice previously 

infected with B. mayonii via tick bite were exposed to simultaneous feeding by Minnesota and 

Connecticut larvae contained within separate feeding capsules. We found no difference in the 

ability of Minnesota and Connecticut larvae to acquire B. mayonii from infected mice and pass 

spirochetes to the nymphal stage (overall nymphal infection rates of 11.6 and 13.3%, respectively). 

Moreover, the efficiency of transmission of B. mayonii by single infected nymphs was similar for 

the Minnesota and Connecticut ticks (33 and 44%, respectively). We conclude that the examined I. 
scapularis ticks from the Upper Midwest and Northeast did not differ in their efficiency as vectors 

for B. mayonii.
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The blacklegged tick, Ixodes scapularis Say, is the primary vector of the Lyme disease 

spirochete Borrelia burgdorferi sensu stricto (hereafter referred to as B. burgdorferi) to 

humans in the United States (Piesman and Gern 2004, Eisen et al. 2016). This tick also most 

likely serves as the principal vector to humans of another recently described spirochete, 

Borrelia mayonii, associated with Lyme disease in the Upper Midwest (Pritt et al. 2016a,b). 

Connecticut I. scapularis ticks were experimentally demonstrated to be capable of serving as 

vectors of B. mayonii (Dolan et al. 2016), and host-seeking I. scapularis nymphs and adults 

from Wisconsin, including ticks collected from presumed exposure sites for B. mayonii-
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infected Lyme disease patients, were found to be infected with B. mayonii (Pritt et al. 

2016a,b). Natural vertebrate reservoirs for B. mayonii have yet to be determined, and 

potential involvement of additional tick vectors in the enzootic transmission cycle remains to 

be explored. As B. mayonii has been documented from the Upper Midwest but not the 

Northeast, we sought to evaluate whether I. scapularis ticks originating from Minnesota in 

the Upper Midwest and Connecticut in the Northeast may differ in their ability to acquire 

and transmit this spirochete.

Materials and Methods

I. scapularis Ticks, B. mayonii Source, and Experimental Mouse Host

The I. scapularis colony ticks used were of the first or second generations from adults 

collected in multiple locations in Fairfield County, CT, in the fall of 2014, or in Anoka 

County (Carlos Avery State Wildlife Management Area) or Washington County (William 

O’Brien State Park), MN, in the spring of 2015. All larval batches originated from females 

that, after they had produced their egg batches, tested negative for presence of B. mayonii 
based on detection of the spirochete flagellar filament cap (fliD) target, which we previously 

showed to be present in B. mayonii (Dolan et al. 2016) and that also is present in B. 
burgdorferi (Dolan et al. 2011, Hojgaard et al. 2014, Goddard et al. 2015). Detection of the 

actin gene of I. scapularis (Hojgaard et al. 2014) was used as a control for both the DNA 

purification and the PCR testing. Combined detection of the I. scapularis actin and Borrelia 
fliD targets in the females was done using a previously described multiplex TaqMan PCR 

(Dolan et al. 2016).

The original source of infection to start the mouse–tick transmission chain now maintained 

in the laboratory was B. mayonii strain MN14-1420, which was originally isolated from 

human blood (Pritt et al. 2016a,b). To infect feeding larvae in this study, we used female 

CD-1 Mus musculus outbred mice (Charles River Laboratories, Wilmington, MA) 

previously infected via the bite of B. mayonii-infected Connecticut I. scapularis nymphs 

(Table 1). Naïve mice used as sentinels to assess transmission by single B. mayonii-infected 

Connecticut or Minnesota nymphs were 1–3-mo-old CD-1 females.

Feeding of I. scapularis Larvae on Infected Mice to Assess the Rate of Spirochete 
Acquisition and Passage to the Nymphal Stage

To avoid bias due to changes over time in spirochetemia of individual mice, we fed 

Connecticut and Minnesota larvae simultaneously on eight infected mice (Table 1). This was 

achieved by affixing two feeding capsules to the shaved flanks of individual mice as 

described previously (Mbow et al. 1994, Soares et al. 2006). The target per mouse for larval 

feeding was to obtain roughly 50 fed larvae from each of the capsules receiving Connecticut 

larvae and Minnesota larvae. Fed larvae harvested from within the capsules were grouped by 

mouse and tick geographic origin into small glass vials (equipped with plaster of Paris and 

activated charcoal and fitted with a lid and mesh to allow for air exchange), which then were 

transferred to desiccators (90–95% relative humidity) in a growth chamber maintained at 

21–22 °C with a photoperiod of 16:8 (L:D) h. Depending on the available numbers of 

molted nymphs for a given mouse and tick geographic origin, all nymphs or subsets of the 
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nymphs were examined, 3–4 wk after the molt, for presence of the I. scapularis actin and 

Borrelia fliD targets as described previously (Dolan et al. 2016).

Nymphal Transmission of B. mayonii to Naïve Mice

As the purpose was to assess the likelihood of transmission by single B. mayonii-infected 

nymphs, we used nymphs originating from larvae that fed on the mouse (2084) yielding the 

highest infection rate (~50%) in the unfed nymphs (Table 1). Based on the expectation that 

half of the nymphs would be infected, we exposed each of 20naïve mice to two nymphs; 10 

of the mice were exposed to Connecticut nymphs and 10 to Minnesota nymphs. Fully fed 

detached nymphs were collected and examined for presence of the I. scapularis actin and 

Borrelia fliD targets. Of the 20 mice, 10 were found to have been fed upon by a single 

infected nymph (Table 2) whereas the remaining mice either were fed upon by no infected 

nymph or two infected nymphs. An additional five mice (2064, 2066, 2071, 2072, 2075) 

were previously exposed to feeding by a single B. mayonii (MN14-1420)-infected 

Connecticut nymph in the study by Dolan et al. (2016), and these mice were included in the 

data presented here (Table 2).

For the mice that were exposed to the feeding of a single infected nymph, ear biopsies were 

taken 3–4 wk after the nymphal feed (Sinsky and Piesman 1989). Ear biopsies were cultured 

in modified Barbour-Stoenner-Kelly (BSK) medium with antibiotics to detect live 

spirochetes as described previously (Dolan et al. 2016). Cultures were examined by dark-

field microscopy, at 400× magnification, weekly for up to 3 wk.

Serum samples from mice that were exposed to an infected nymph but still yielded 

spirochete-negative ear biopsies were taken 8–10 wk after the nymphal feed and examined 

for serological reactivity to B. mayonii using the MarDx B. burgdorferi (IgG) Marblot Strip 

Test System (MarDX Diagnostic Inc., Carlsbad, CA). The Marblot strip test system was 

developed to detect antibodies to different B. burgdorferi proteins, but we found it to also be 

reactive to antibodies generated against B. mayonii (Table 2). As the Marblot strip test 

system was developed for detection of human antibodies, testing of mouse serum was 

accomplished with a modification to the manufacturer’s instructions by using alkaline-

phosphatase labeled goat anti-mouse IgG + IgM (H + L) (Kirkegaard and Perry 

Laboratories, Gaithersburg, MD) as the detection antibody at 1:2,000 dilution. Serum 

samples taken 8–10 wk after the nymphal feed from mice that yielded spirochete-positive 

ear biopsies were used as a positive control (Table 2). Marblot strip banding patterns were 

analyzed and scored as positive, according to the manufacturer’s recommendations, when ≥5 

distinct bands were evident.

Statistical Evaluation

The proportions of nymphs that were infected with B. mayonii after the larvae had fed on 

infected mice were compared between Connecticut and Minnesota ticks using mixed effects 

binomial regression with a log link and a random effect for mouse to account for anticipated 

within-mouse correlation. Using the log link provides a direct estimate of the ratio of the 

tick geographic origin infection probabilities. Model parameters were estimated using 

maximum likelihood; models were compared using the likelihood ratio test, and 95% 
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confidence intervals (CI) were computed using profile likelihood. Standard diagnostics were 

used to evaluate model adequacy (Pinheiro and Bates 2009). Intraclass correlation 

coefficients (and CIs) were used to evaluate the magnitude of within-mouse correlation (Zou 

and Donner 2004).

Regulatory Compliance

Animal use and experimental procedures were in accordance with an approved protocol on 

file with the Centers for Disease Control and Prevention Division of Vector-Borne Diseases 

Animal Care and Use Committee.

Results

Borrelia mayonii Acquisition From Infected Mice by Larval I. scapularis and Transstadial 
Passage to the Nymphal Stage

There was substantial variability in infection rates for nymphs having fed as larvae on 

individual infected mice, ranging from 1.3–47.5% for Connecticut and Minnesota nymphs 

combined (Table 1). However, infection rates for nymphs having fed as larvae on the same 

individual infected mouse were similar for Connecticut and Minnesota nymphs. For the 

seven mice with more than 15 resulting nymphs examined for each tick geographic origin, 

three mice yielded nymphs with infection rates <4% for both Connecticut and Minnesota 

ticks, one mouse yielded nymphs with infection rates <8% for both Connecticut and 

Minnesota ticks, and three mice yielded nymphs with infection rates ≥20% for both 

Connecticut and Minnesota ticks (Table 1). Moreover, there was no clear trend among these 

mice for infection rates being higher for either Connecticut or Minnesota nymphs; infection 

rates were numerically higher for the Connecticut ticks for three of the mice and for the 

Minnesota ticks for four of the mice.

These observations were reinforced by the statistical analysis. Accounting for anticipated 

within-mouse correlation, the proportions of infected nymphs did not differ statistically by 

tick geographic origin in the binomial regression (RR = 1.12, 95% CI 0.75–1.65; likelihood 

ratio test P-value = 0.57). The variance of the random effect for mouse was estimated to be 

1.86 (95% CI 0.66–6.83), characterizing the noticeable variability seen among the 

proportions of infected nymphs among the mice. Model diagnostics indicated no serious 

departures from model assumptions. Based on this result, we estimated the intraclass 

(intramouse) correlation coefficient (ICC) as 0.25 (95% CI 0.01–0.77), combining results for 

both tick geographic origins within mice. Note that the CI for the ICC is wide in this 

context, reflecting relatively few mice in this experiment (n = 8) and relatively large 

variability in the results among mice.

Nymphal Transmission of B. mayonii to Naïve Mice

Single B. mayonii-infected nymphs that were allowed to feed to completion on naïve mice 

transmitted spirochetes to 4/9 mice (44%) for the Connecticut ticks and 2/6 mice (33%) for 

the Minnesota ticks (Table 2). Both Connecticut and Minnesota ticks thus were capable of 

transmitting B. mayonii. For both Connecticut and Minnesota ticks combined, the overall 

Eisen et al. Page 4

J Med Entomol. Author manuscript; available in PMC 2018 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transmission efficiency for single infected nymphs was 40% (transmission occurring in 6/15 

mice).

Discussion

We present experimental evidence indicative of similar vector efficiency of I. scapularis ticks 

from the Upper Midwest (Minnesota) and Northeast (Connecticut) for the recently 

recognized Lyme disease spirochete B. mayonii (strain MN14-1420). This is perhaps not 

surprising because previous experimental studies reported comparable vector efficiency of I. 
scapularis from different parts of its extensive range in the eastern United States for B. 
burgdorferi (Piesman and Sinsky 1988, Sanders and Oliver 1995, Jacobs et al. 2003, 

Goddard et al. 2015). If the current geographic range of B. mayonii should prove to be 

restricted to the Upper Midwest, as suggested by Pritt et al. (2016a,b), this is most likely due 

to factors other than variation in the vector efficiency of I. scapularis across its range. An 

ongoing convergence of the previously distinct geographic foci for I. scapularis in the Upper 

Midwest and Northeast (Dennis et al. 1998, Eisen et al. 2016) could facilitate spread of B. 
mayonii from the Upper Midwest into the Northeast via infected ticks or vertebrates. 

Important study caveats include the use of an experimental mouse host, a single source 

isolate for B. mayonii, and tick colonies from only two states. As we learn more about the 

natural maintenance of B. mayonii, follow-up studies should be able to address some of 

these study weaknesses. Urgent research needs include determination of the natural 

vertebrate reservoirs for B. mayonii and clarification of its current geographic range by 

surveillance of vector ticks and putative vertebrate reservoirs.
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Table 2

Transmission of B. mayonii by single infected nymphal I. scapularis ticks originating from Connecticut and 

Minnesota to naïve outbred white mice

Mouse Tick geographic
origin

No. infected nymphs fed
upon the mouse (total no.
nymphs fed upon the mouse)

Culture of ear biopsy
(taken 4 wk after the nymphal feed)

to detect live spirochetesa

Serological reactivity to
B. mayonii (8–10 wk after

the nymphal feed)a

2064b Connecticut 1 (10) − −

2066b Connecticut 1 (7) − −

2071b Connecticut 1 (11) + Not tested

2072b Connecticut 1 (8) + Not tested

2075b Connecticut 1 (10) − −

B19 Connecticut 1 (2) − −

B21 Connecticut 1 (2) + +

B22 Connecticut 1 (2) − −

B27 Connecticut 1 (2) + +

B09 Minnesota 1 (1) − −

B12 Minnesota 1 (1) − −

B13 Minnesota 1 (2) − −

B14 Minnesota 1 (2) + +

B15 Minnesota 1 (2) − −

B16 Minnesota 1 (2) + +

a
+indicates infection in culture or reactive serology.

b
From Dolan et al. (2016).
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